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The deformation of a liquid drop immersed in a conducting fluid by the imposition 
of a uniform electric field is investigated. The flow field set up is due to the surface 
charge and the tangential electric field stress over the surface of the drop, and 
the rotationality of the Lorentz force which is set up by the electric current and 
the associated magnetic field. It is shown that when the fluids are poor con- 
ductors and good dielectrics the effects of the Lorentz force are minimal and the 
flow field is due to the stresses of the electric field tangential to the surface of the 
drop, in agreement with other authors. When, however, the fluids are highly 
conducting and poor dielectrics the effects of the Lorentz force may be pre- 
dominant, especially for larger drops. 

1. Introduction 
A liquid drop immersed in a fluid which is subjected to a uniform electric field 

becomes prolate or oblate and is very nearly a spheroid, with the axis of the 
spheroid in the direction of the impressed field (O’Konski & Thacher 1953; 
O’Konski & Harris 1957; Allan & Mason 1962; Garton & Krasucki 1964; Taylor 
1966; Torza, Cox & Mason 1971), and usually bursts a t  high fields. The deform- 
ation is due to the stress exerted by electric field over the surface of the drop. 
When the medium is perfect dielectric, that is, when the electric conductivity r of 
the medium is zero, the drop always takes a prolate shape before bursting. This 
is explained in terms of the surface tension and the electric field stress, which 
is normal to the surface of the drop (Garton & Krasucki 1964). 

When the fluid is slightly conducting it was observed that the drop sometimes 
takes an oblate shape (Allan & Mason 1962). Taylor (1966) pointed out that in 
this case there is a surface charge over the interface of the drop and external 
fluid, and consequently the electric field stress has a component tangential to 
the surface of the drop. This can be balanced by hydrodynamic stresses produced 
by liquid flow in the drop and its surroundings. Taylor proposed an electrohydro- 
dynamic theory t o  explain this. The theory is in reasonably good agreement 
with observation [see addendum t o  Taylor’s (1966) paper by McEwan & DeLong 
and Torza et al. (1971)l. 

The flow field of Taylor’s solution exterior to the drop is very similar to that 
produced by the passage of a uniform electric current parallel to the axis of an 
axisymmetric solid body immersed in a fluid of different electrical conductivity 
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(Chow & Halat 1969; Sozou 1970a, b ) .  I n  this case the flow field is produced 
by the rotational Lorentz force due to the distorted electric current and the 
associated magnetic field. Since here we are concerned with slow (Stokes) flows, 
and the components of the stress of both the electrohydrodynamic and magneto- 
hydrodynamic flow fields normal and tangential to the surface of the drop 
have the same angular dependence, we can superimpose these fields. This re- 
arranges but does not upset the balance of stresses over the surface of the drop. 
Below, we present a complete theory which takes account of both the magnetic 
and electric effects. For fluids which are poor conductors the magnetic effects 
are negligible and the theory, in effect, reduces to Taylor’s work. For fluids which 
are good conductors and poor dielectrics, especially for larger drops, the magneto- 
hydrodynamic effects may be dominant. The distortion of the drop and the flow 
field set up may entirely be due to the rotationality of the Lorentz force. When 
the drop is replaced by a solid body only the magnetohydrodynamically induced 
component of the external flow field remains. 

2. Electromagnetic equations and stresses 
We consider an infinite incompressible viscous conducting fluid containing an 

immiscible drop, assumed spherical, of another fluid. We use a spherical polar 
co-ordinate system ( r ,  8,q5), with the origin at the centre of the drop, and assume 
that a uniform electrostatic field E is imposed parallel to  the direction 0 = 0. 
Let r denote the electrical conductivity, K the dielectric constant, ,u the coefficient 
of viscosity and x the permeability of the fluid. The electric current density is 
J, the magnetic field is H and the magnetic induction is B. Let the suffix 1 refer 
to the fluid extending to infinity and the suffix 2 to  the liquid drop. Our steady- 
state electromagnetic variables, in the absence of fluid motions, can be obtained 
from books on electromagnetism and in rationalized mks units are given by 

) ( 2 + R r 3  J 1 - ~ a 3  
1 1 - 1  ( 2 + R r 3  

J , = a  E - a , E  1 - 2 - -  cos0, -a,E 1+-- sin0,O , ( 1 )  

3cr2 E 3cr2 E 
cos0, - - 

2 + R  

t . o ~ 1 E l r - ~ o ~ 2 E 2 r  = - p  a t  r = a, ( 5 )  

where a is the radius of the drop, R = c2/crl, c0 the permitivity of free space, 
E,, and E ,  t h e  radial components of El and E, respectively, and p the surface 
charge at the interface between the drop and the rest of the fluid. 
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The radial, prv, and tangential, pro, components of the stress exerted on the 
surface of the drop by the electric and magnetic fields are given by 

( P r r ) ~  = Eo( - S K , E ~ + K 1 E ~ T f ~ K 2 E ~ - K 2 E ~ r )  

= [9eOE2/2(2 + R)2] [KZ - K1 -I- {K1(R2+ 1) - 2K2} cOS2 81, (6) 

(prr)B = - t x l H : + $ ~ 2 H g  = & (3R~1E/(2+R))2(x2-X1)Ua(1 - c o s ~ ~ ) ,  (8) 

(Pro)B = 0, (9) 

(Pr0)E = Eo(K1E1rElB--KpE2rE2B) = - ( ~ E o E ~ / ( ~ + R ) ~ )  (KIR-K2)sinf?Cos@, ( 7 )  

where El* and EZ8 are the 0 components of El and E2 respectively, 

3. Fluid motions and stresses 
at the surface 

of the drop must be balanced and this can only be done by the viscous stresses 
associated with a flow field in the drop and its surroundings. The flow field for 
the case when the stresses due to the inertia are negligible in comparison with the 
ones due to  viscosity (Stokes flow) was discussed by Taylor (1966). The flow 
field, which is in reasonable agreement with observation, is symmetrical about a 
plane containing the electric field and also about a plane through the centre of 
the drop perpendicular to  the electric field. Thus the flow field exterior to the drop 
is similar to that produced by the J x B force associated with the passage of a 
uniform electric current parallel to the axis of an axisymmetric solid body im- 
mersed in a fluid of different electrical conductivity (Chow & Halat 1969; Sozou 
1970u, 6 ) .  The two flow fields may therefore coexist, or the flow field which is 
exterior to  the drop and was discussed by Taylor may be produced by the J x B 
force. 

Following Taylor (1966) we assume that the velocity is small, ignore the con- 
vection of the surface charge p by the hydrodynamic currents and assume that 
in the momentum equation the inertia terms are negligible in comparison with 
the viscous ones. We also ignore the effect of the velocity on the electromagnetic 
field, that  is, we assume that the flow field does not affect the electromagnetic 
variables, which are still given by (1)-(5). 

As pointed out by Taylor (1 966), for equilibrium, the stress 

I n  terms of the stream function -@ the fluid velocity v is given by 

The momentum equation is 
V p  = J x B +pV2v, 

where p is the fluid pressure. When we make use of (1)-(4) and ( lo) ,  and take 
the curl of (1 1 )  we obtain 
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where 

The solution of ( 1 2 )  and ( 1 3 )  that would produce the appropriate stress to 
balance the at  the surface of the drop (Taylor 1966) and also have the geo- 
metry due to the symmetry of the J x B force about the planes 0 = k $r and 
0 = 0 , 0  = nis  

= [ A , a ~ r ~ f ~ ~ a z - ~ -  1 - R  (r2 + 2 a3r-1)] sin2 0 cos 8, (15) 2 + R  

$, = ( A  c 1 r 3  + C2 a-3r5) sin2 8 cos 8, (16 )  

where the A’s and the C’s are constants and h = x la~E2a3 /8p1 .  The velocity 
field represented by ( I  5)  is finite, instead of zero, at infinity. This is due to the 
neglect of the inertia terms from the momentum equation (Sozou 1970a). 

As always, p is obtained by integrating the momentum equation. After a little 
algebra it is found that the hydrodynamic stresses, 

at  the surface of the drop are given by 

12h 
X ( 3 C o s 2 0 - l ) + - - -  + R)2 + constant, (17) 

x ( 1  - cos2 0) + constant, (19 )  
(20 )  

At r = a the radial component of the velocity is zero and the tangential com- 

ap;l(pro),H = - (6.4, + 16C2) sin 8 cos 8. 

ponent is continuous, that is, 

A1+C1-h(4 -5R+Rz) / (2+R)2  = 0 = A2+C,,  

and -2Al -2h( l+R-2R’ ) / (2+R)2  = 3A,+5C,, 

so that (71 = - A ,  +h(4-5R+R2)/(2+R)2, 

A ,  = A1+h( l+R-2R2) / (2+R)2 ,  

C, = -Al -h(  1 + R - 2R2)/(2 + R)’. 

At Y = a the stresses must balance, i.e. 
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x (3  cos2f?- 1 )  = 2T(2+R)2+constant, (26) 

[lo(,Ul +p2)  (2 R)'A, + 9C,aE2 (K1R - K2)  - h,U1(4 - 1422 + lo&?) 

+ 10Ap2( 1 + R - 2R2)] sin 8 cos I9 = 0, (27) 

where T is the surface tension acting over the spherical drop. If we equate to 
zero the coefficient of sin 8 cos 6 in (27) and the coefficients of cos2 8 in (26), after 
a little algebra we obtain 

[10+10R-20R2-H(4-  14R+10R2)+Mh,(XR- l)], 

(28) 

h 
- -1O( l+M)(2+R)2  

S( 1 + R2) - 2 + - 3 + 2 M  ___ ( x ~ -  1) 
5 l + M  

6 7 -  2R - 5R2 44 - 4R - (25 + 151Q) R2 

5 
=-[ A, 5(1+M)  + 

where M = ,u1/p2, X = K l / K 2 ,  Q = x1/x2 and A, = 72e0~, / (x la~a2) .  In  practice 
Q =  1. 

4. Discussion 
When (29) is satisfied the liquid drop has a spherical shape. If (29) is not satis- 

fied the drop will become oblate or prolate. In  order to find out whether under 
conditions where (29) is not quite satisfied the drop will become oblate or prolate 
we employ Taylor's (1966) technique and assume that the application of a stress 
C cos2 I9 normally inward to the surface of the drop is necessary to keep the drop 
spherical. If C is positive, that is if at the poles (8 = 0, 8 = n) the stress has to be 
applied in the inward direction to keep the drop spherical, the drop must be 
elongated in the direction of the field. If C is negative the drop is oblate. I f  we 
replace T on the right-hand side of (26) by T +Ccos20 and, making use of (28) ,  
equate the coefficients of cos2 8 on the two sides of the resulting equation we find 

S( 1 + R2) - 2 + - - + zM (XR- 1 )  
5 1 + M  

6 7-2R-5R2 44-4R-(25+15/Q)R2 
5 

+ 

9E0 UK2 E2 

= 4(2+R)2 

-&[ 5 ( l + M )  

Equations (29) and (30) are generalizations of the expressions derived by 
Taylor [his equations (24) and (25)' corrected for an arithmetic error in deriving 
the normal hydrodynamic stress corresponding to the second term of 3k2] for the 
case when the magnetic effects are neglected. They reduce to Taylor's expressions 
when the right-hand side of (29) is set equal t o  zero. Taylor's expressions were also 
derived by Torza et al. (1971) as a special case of the problem where the electric 
field varies harmonically with respect to time. Indeed, Torza et al. attempted an 
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estimate of the deviation of the shape of the drop from spherical. They assumed 
that for small deformations the drop is a spheroid - prolate or oblate - of small 
eccentricity, that is, they assumed that the surface of the drop is given by 

r = all + 4 3  cos2 B - 1)], 

where 6 is small. The discontinuity of normal stress due to the surface tension is 
now given by T(r;l+ rgl), where rl and r2 are the principal radii of curvature at 
any point of the drop surface, or 

$aT(r;l+r;l) = T ( l  -2e+6ec0s20).  (31)  

If we now replace T on the right-hand side of (26) by the right-hand side of (31) 
and then equate the coefficients of cos2 Bon the two sides of the resulting equation 
we find that 

The sign of E ,  like the sign of C in (30), shows whether the deformed surface is 
oblate or prolate. The experimental results of Torza et al. (1971) are in qualitative 
agreement with the theory, though the deformations were found to be larger 
than the theoretical predictions. Note also that the approximation of the de- 
formed surface by a spheroid is not necessarily accurate. For an accurate approx- 
imation we must, of course, ensure that over the surface of the drop there is 
balance, correct to order E ,  in the tangential and normal stress. This requires 
modifications, correct to order E ,  of the velocity and electromagnetic field and 
thus of (27) and both sides of (26). 

The liquids used by Allan & Mason (1962) and Torza et al. (1971) are poor 
conductors and make A, very large and the magnetic effects much smaller than 
the ones due to the electric field. For these liquids Taylor’s suggestion, that the 
observed flow patterns are due to the stress of the electric field, is correct. When, 
however, the liquids are poor dielectrics and good conductors, especially for 
larger drops (that is, when A, is not large) the magnetic effects due to the electric 
current become important and in the case where XR + 1 they must be the domi- 
nant ones. In  the special case when the fluid external t o  the drop is highly (almost 
perfectly) conducting A, is very small, R + 0 and, provided S<+c, C in (30) 
is negative, i.e. the drop will become oblate. A,  is positive and at  the interface 
of the drop the direction of circulation is from pole (0 = 0,  and 8 = ;.) to equator 

(0 = 
Equations (22), (23) and (28) show that when account is taken of the magnetic 

effects of the electric currents it is possible, if there are liquids with the appro- 
priate properties, to find configurations where A ,  = C, = 0, that is, the tangential 
stress of the electric field a t  the interface is balanced by the stresses of the external 
flow field there, and the flow field inside the drop is zero. It would be of interest to 
subject bubbles immersed in highly conducting fluids to the influence of a uniform 
electrical field (or electric current) and test the theory presented here experi- 
mentally. 

Finally we note Taylor’s remark that if the drop is replaced by a solid body no 
flow is induced in the fluid by the tangential component of the electric field. In  
such a case, however, flow is induced by the Lorentz force. Since for three- 

6 = C/(6T). 

47~) [Taylor 1966, figure 11. 
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dimensional configurations this force is rotational (Sozou 1970a) it cannot be 
balanced by the hydrostatic fluid pressure and sets the fluid in motion. Thus 
for a solid sphere we set A ,  = 0, that is, 

A ,  = - h(1 + R - 2R2),/(2 + R),, C, = h(5 - 4R- R2)/(2 + R),, 
and obtain the case discussed by Chow & Halat (1969). 
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